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The mean field bound on magnetization is proved for a class of one-component 
ferromagnetic: systems and for D components systems with arbitrary D. 
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1. I N T R O D U C T I O N  

The mean field theory bounds on the critical temperature and on the 
magnetization is a subject of a number  of recent works. The critical 
temperature bounds in the s p i n - l / 2  case were first proved by Griffiths. 
More recent results are discussed by Simon. (7) 

Here we prove magnetization bounds for systems with ferromagnetic 
two-body interactions. In case of a one component  the bounds apply to the 
natural class ~J)2 of systems, (1'4) (cf. Section 2), for which the critical 
temperature bounds have been proved in Ref. 1. Using inequalities relating 
many  component  systems to one-component  ones, (4) we obtain the magne- 
tization bounds for any number  of components. Pearce, (4~ proves the 
magnetization bound for a sparse subclass of ~92 and for two- and three- 
component  systems. Also C. Newman  kindly pointed out to me that he 
proved the magnetization bound for one-component  systems for which 
G H S  inequalities ho ld - - a  result announced at Rutgers University in De- 
cember 1981. 

In the one-component  case the proof (Section 2) is based on an 
extension of Jensen's inequality (Section 3), to odd functions which are 
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concave on the positive half-axis and to measures/a  such that/x ([a + m[) 
> / L ( ] -  o e , -  a]) for any positive a. That  the measures defined by ferro- 
magnetic  systems satisfy this condit ion is shown in Section 4 using the 
F K G  inequalities. M a n y - c o m p o n e n t  systems are treated in Section 5, with 
a proof  of the needed convexity properties of Bessel functions sketched in 
Appendix  B. We consider systems on lattices more general than 77 ", with a 
few points per unit cell, like those on face centered lattices. This leads to a 
system of mean  field equations properties of which may  be known but  for 
which we found no references. This is discussed in Appendix  A. The 
interactions are not  assumed to be of a finite range. 

2. ONE-COMPONENT MODELS 

Our lattice 0_ is a discrete Z"-invarient subset of R ' .  The spin distribu- 
tions /~a, the external field ha, a E l_, and the two-body interaction (J(a, 
b))a,b c ~_ are Z"-invariant. Fur thermore  the measures ~a on R are assumed to 
be even of a compact  support  and not  concentra ted at {0}, J(a, b), h a > O, 

~ J ( a , b )  < ~ ,  a n y a  
b 

The lattice is assumed to be J -connected ,  i.e., for any a, b ~ k there is a 

natural  n and a 1 . . . . .  a n ~ g_, a I = a, a n = b, such that J(a i, ai+ I) :r 0,  
i = 1 , . . . ,  n -  1. Any  model  can be reduced to a family of connected 
models by passing to " J - c o m p o n e n t s "  of D_. The configurat ion space of the 
system is 

~ =  I-I [ - - ra , ra ] ,  ~A = I-[ [--ra,ra] 
a E  l_ a@A 

where r a -- sup supp/~.  : s. �9 ~ ~ R are the usual spin variables, i.e., s a is the 
projection on the a th  coordinate.  The (ferromagnetic) Hamil tonian  H is 
written as 

H = - ~ J ( a , b ) s a s  b -  ~ h ( a ) s  a 
a,b a 

For  an inverse temperature/3  we set, as usual, 

K(a,b)  =/3J(a,b),  k(a)  =/3h(a) 

p(K,  k) = lim ~ log ZA(K, k) 

ZA= f f expI,,,b~/, ~ K(a,b)saSb+ ~a k(a)Sa] a@~A dtta 
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The magnetization (m~)~n_ is the right derivative of p: 

p (  . . . .  k a + e  . . . .  ) - p (  . . . .  k, . . . .  ) 
m a = lim 

~$0 E 

By the well known properties of equilibrium states 

m~ = <sa> + 

where { >+ is the equilibrium state obtained as the limit of the finite 
volume states { )+ defined by the " + "  boundary conditions. The { )+ 
state inherits the symmetries of the Hamiltonian. In particular, it is Z p 
invariant. 

Let for a E 0_ 

L(x) - 

f te 'xl~ ~ (dt) 

f e'Xl~( dt) 

Then the DLR conditions are that, in particular, 
+ 

<s,) + = ( fa( ~ K(a,b)Sb + k(a))  ) , all a ~ k  

The functions fa are odd. They are strictly increasing since 

;(t -L(x))2 o(dt) 
f/,(x) = > 0 

f e tX#a (dt) 

Let us assume that f~ are of class 9~2, (1'4) i.e., that they are concave on 
[0, + oo] (cf. Fig. 1); the class 992 is discussed at the end of this section. 
Then by Sections 3 and 4 the following fundamental inequality holds: 

"~ g.' 

F 0,,~ 

/ 
/ 

K > O  
k = O  

Fig. 1. Fixed points of F for k > 0 and for k = 0. For k > 0 the iterates F(m), F2(m) F3(m) 
are indicated. 
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Thus, setting 

m a = (sa) + 

we have rn,/> 0, (ma) is 7/p invariant, and 

ma < f~( ~ , K ( a , b ) m b  + k ( a ) )  (a l ia)  
b 

The mean field bound for magnetization is an easy consequence of this. We 
first discuss the case of Q_ = 7/~ when the arguments have a simple geomet- 
ric interpretation (Fig. 1). Then we summarize the generalization to general 
lattices worked out in Appendix A. 

If ~. = 71 ~, m, ,  f~, k(a)  and K(a)  = ~ b K ( a , b )  are a independent and, 
dropping the a, (1) becomes 

m <<. f ( K m + k )  

It is obvious from Fig. 1 that for k > 0 there is only one nonnegative 
solution m* of the equation 

m = F(m) ,  m >1 0 

where F(m)  = f ( K m  + k). It is given by the intersection of graphs of F and 
m~-->m. 

The fixed point of F has the following properties. 
For k = 0 there is always the zero fixed point. For small K it is the 

only fixed point. As K increases this fixed point becomes unstable and 
eventually there appears another strictly positive stable solution. The criti- 
cal, or bifurcation, value of K is given by F,(0) = 1, i.e., gcr = f ' ( 0 ) -  1. Thus 
for any (K, k) there is only one nonnegative stable fixed point m* of F. It 
depends on (K, k) in a continuous and monotonic way. If m < F(m)  then 
m <<. m*. 

In Appendix A we analyze the general case, with conclusions similar to 
the above. In the space M I of ZP-invariant nonnegative m's, m = (m~)a~ ~, 
we consider the map F m ~ ( f a ( ~ b K ( a , b ) r n 6  + k~))a ~ L. For  k = 0 and 
/3 < tier there is the zero fixed point only. It becomes unstable at/3or and 
for/3 >/3or there is a unique nonzero fixed point. Thus for each (K, k) there 
is unique maximal fixed point m* of F. It depends on (K, k) in a continu- 
ous and monotonic way, and if  m~ < F(rn)~ then m~ < m* and, for mO, 
Fn(m)--->m * as n o  oo. fl~r is given by the condition that the maximal 
eigenvalue of F'(0) is equal to 1, i.e., /3~ is the inverse of the maximal 
eigenvalue of the map 

m---> ( f~(O) ~J(a,b)mb).~n - 
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(m is 2~" invariant). Thus (1) implies the mean field bound 

ma <<. m*, a E k 

This completes the discussion in the case/z, ~ 932. 
We now discuss the class ~92 to which our results apply. For spin p, 

p = 1/2, 1, 3 / 2  . . . .  

r =  - - p ,  - - p +  1 . . . . .  p 

f ( x ) -  2P2+1 cth 2 P ~ x  - l c t h  ~ = pB:(px)  

where Bp is the corresponding Brillouin function. By direct calculation one 
checks that f " ( x )  is negative for x > 0. Thus our results apply to one- 
component spin systems with arbitrary value of the spin. Pearce ~4) proves 
the mean field bound for 2p + 1 = 2 q �9 3 r with natural q, r. 

In case of a continuous distribution: i~(dx) = p(x)dx, p supported by 
[ -  1, 1] and not decreasing on [0, 1], Pearce proves a property stronger than 
T~. This allows him to treat D-component systems (cf. Section 5) with 
D = 2, 3. In Appendix B we sketch a proof that the measure/~D, 

f f ( x ) ~  D (dx) = f~ l f (x ) (1  - x2) ~/2)~- 3~dx 

is of class ~ for any D. This yields the mean field bound for any number 
of components (Section 5). 

3. A VERSION OF THE JENSEN'S INEQUALITY 

The following proposition has been used in the preceding section. 

Proposition. Let O be a probability measure on a space Y and let X 
be a real random variable. Let f be an odd function R ~ R which is 
concave on [0, + m[. If for any a ~ 0 o(X >1 a) >1 o(X < - a) and both X 
and ~ o X are o-integrable then 

Using a standard approximation argument we first reduce our problem 
to one with X assuming only a finite number of values: Let 

X n ( x ) = _ + 2 k  if - + X ( x ) ~ [ 2 k , k 2 + l  [, k = 0 , . . . , 2  2n 

+ 2  ~ if +_X(x)>12 ~ 
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Clearly p(X,  >- a) >1 o(X  n <-< - a), any a ~> 0, and therefore by the argument  
of Ref. 2, p. 303, it is enough to prove the proposit ion for each X, .  

Thus we can assume that there are nonnegative numbers  x 0 < . . .  

< Xm, X 0 = 0; Yt < Y . ,  such that, with a~ = p(X  = xi), fi~ = p(X  = - Y i ) ,  
EiOii "l" Ei~i ~--- 1. Then  under  our assumptions on f we have to prove that 

:( .,,,) > 
�9 j i j 

if for any a >/0 

xi  ) a y j  >/ a 

Since the term x 0 contributes zero to both sides of the inequality we will 
take i/> 1 and assume 

i=l  i=1 

If all fii = 0 this is just  an expression of the concavity.  In  case m, n = 1 
the inequality has the graphical interpretation shown in Fig. 2. The interval 
joining (x,  f ( x ) )  with ( - y ,  f ( - y ) )  lies below the interval joining (x,  f ( x ) )  
with ( -  x, f ( -  x)), which in turn lies below the graph of f for the values of 
the argument  between 0 and  x. The following arguments  implement  the 
above idea. 

! will show below that under  our  conditions one can decompose flj as 
follows: there are (7/j)i= 1 . . . . . .  ; j =  1 . . . . . .  such that 7~ > 0, ~ , / ~  = ~ ,  ~ j  ~,,j 
= Ot i and 70. = 0 if x i < yj .  Assuming this rather intuitive fact the proof  

i.!" Yl 
Fig. 2. To the proof of a version of the Jensen's inequality. 
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continues as follows: 

j j i I 

YJ J "~i YiJ) f (  xi) :f(~i (OLi--~j ~ii~fij)Xi)~i (OLi--E yj 

l 

> E aJ(x,) - E E YJ(Yj) = E a~f(xi) - E fljf(Yj) i j i i j 
Here  to obtain the first inequality use the fact that ~'0 is zero if y j / x  i > 1 
and that therefore a i - ~,j yOyj/xi >1 0 and ~,,i[ai- ~,j(yj/x~)yO. ] < 1. 

It remains to demonst ra te  the existence of (y~j). This is done  by 
induct ion with respect to n as follows. 

Let  k < m be the largest integer with ~,~>k ag >1 ft,; that such k exists 
and that x k/> y~ follows f rom the condit ion (3). Define now 

7~,~ = ai if i > k 

0 if i < k  

= B .  - 

i>k 
(here a i is set equal to 0 for i > m). Obviously, ~'i,, has the correct  
properties. 

Define now a~ ') = a~ - Yi,,. Then  the system (xl ,a~ ' ) ;  x2,a~l); . . .  ; y , ,  
fll ; �9 �9 �9 ; Y , -  1, f t , -  1) again satisfies the condit ion (3) and we can cont inue 
with construct ion of "Yi,n-1" Existence of y/j is proved. 

Joel Lebowitz pointed out to me that (y~j) looks very much like the 
measure u (Ref. 5, p. 185) of a proof  of the F K G  inequalities. 

4. THE FUNDAMENTAL INEQUALITY 

Assuming now that  fo of Section 2 is of class ~ we will use the F K G  
inequalities (Ref. 5, Chap. 3) to deduce the fundamenta l  inequality f rom 
Proposit ion 3. 

We note  that if X, is a sequence of r andom variables satisfying (2) and 
Xn-->X pointwise then X satisfies (2). Also if p. satisfies (2), Pn(X > a) 
~ p ( X  >1 a) and p.(X < - a ) ~ p ( X  < - a ) ,  a />  0, then p satisfies (2). 
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Therefore it is enough to show that with Y = ~A, P = ( }~, X = 
~,b~AK(a,b)sb, a E A, the condition (2) is satisfied. 

Let p0 be the Gibbs state on 3s A corresponding to k = 0 and zero 
boundary conditions. Then by the up-down symmetry 

p~ >~ a) = p~ < - a) 

Since p is obtained from p0 by increasing the interaction in the sense of 
F K G  and for positive K(a, b) the characteristic function of X >/a (resp. 
X < - a )  is F K G  increasing (resp. F K G  decreasing) one obtains 

p(X >1 a) >t p~ >1 a ) = p ~  <~ - a )  >>. p(X <~ - a )  

as required. The rest follows from the fact that under our assumptions for 
each a E l_ the sum 

X = • K(a,b)Sb+ k(a)  
b ~ _  

is convergent. 

5. MANY COMPONENTS 

We first explain the form of the mean field bound. 
Consider the H-= 7/~ case; generalization to the general case is obvious. 

Then the mean field magnetization solves the equation 

m = 
f s e  ~(Km +E) df](g) 

f e s(Km+~) d~2(g) 

where K = ~ b~J(a, b), 17 = fih, h is the external field and d~2 is a rotation- 
invariant measure on the unit sphere of R D. With 

we have 

�9 (y) =fe~ed~(s) 

m = - ~ -  (Kin + 1r 

Now, because of rotation invariance, qb(37) = 0(1371) where g, is a function of 
one variable. Thus 

- ~' ( I g m + E I )  gm+k 
m = --~ IKm +El 

It follows that, for/~ ~ 0, ~ is parallel to/~ and if it has direction of/~, as in 
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Then, by definition 

the case of interest here, then 
,)' 

m = --~ (Km + k), m = I~] (4) 

This has the form of the mean field equation for one-component models 
and the proof that the solution of (4) bounds the magnetization of the 
many-component model is through first comparing it (4) with the corre- 
sponding one-component model and then using mean field majorization for 
the later. 

Let 

1 log ZA(k ) pfk) --lim pA(k ), pA(k) = -~ 

l] K(a,b)s o . % + k  2 so @ da(so) 
a , b ~ A  a E A  a@A 

m -- lim p(k  + e) - p ( k )  = D + p ( k )  
e$O s 

Let /~ > k and let D stand for the derivative; by the convexity of p 
and PA 

m(k) <~ limDpA~ ) 

where the (expanding) sequence (An) has been so chosen that DpA.(l~ ) is 
convergent. 

On the other hand by Ref. 4, Section 3, DpA,, (/~) < Dfia.(l~ ) wherefi(/~) 
corresponds to a one-component system with 

and/~a such that 

-BI-I = 2K(a,b>o,b+ k2 ,o  
ab a 

ff(s>a (ds) = da (s) (5) 

Passing to a subsequence (A,k)k~ for which DfiA(l~ ) is convergent we 
see that there exists an equilibrium state of the one-component system, say, 
O, such 

DpA.~ (]C )--> O(So) 
and thus 

m(k) ~ p(so) 

By the maximality property of the " + "  state, O(so)<~ 0 + (Sa) and since 
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p~(sa) >>- O~-(s~) as/~/> k we obtain the majorization 

m(k)  <~ p~- (s~) 

According to Appendix B the measure/z~ defined by (5) is of class ~ .  
Therefore, by Section 2, pk+(S~) is majorized by the maximal nonnegative 
solution m(K, k) of (4) which is the mean field bound. 

All this generalizes to more general lattices, as in Section 2, with the 
equation (4) replaced by 

~ ) ma = -~ 2b K(a,  b)m b + k~ , a ~ L 
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APPENDIX A. THE MF MAGNETIZATION 

The framework is as in Section 2. M is the set of all m = (ma)~L,  
0>1 m a >l 1. m <~ n, m, n E M, if m~ -<< n a v a E k , a n d m < n i f m ~ <  n a n d  
m v a n. A sequence m (n) in M is converging to m if rn~ (n)--> m~, Va E D_. 

F: M ~ M is defined by 

F(m)~= fa( fl~b J(a,b)mb + flhama ) 

We will use the following monotonicity and convexity properties of F: 
( F  0 F is strictly increasing, i.e., m < n ~ F(m) < F(n). 

This follows from positivity of J and h and from the fact that fa'S are 
strictly increasing. 

Let M 1 be the set of all W-invariant elements of M. M ~ is F invariant 
and of a finite dimension equal to ]D_/Z~[. The set MI, of elements of M r 
which are nowhere zero is invariant too. 

( /2) For any m ~ M ,  1 and 0 < t < 1 there is ~/> 0 such that 

F(trn) >1 (1 + ~)tF(u) 

For , / --  0 this is a direct consequence of concavity of f~'s. With ~ > 0 this is 
an easy consequence of the strict convexity of f~'s (cf. below). In case 
k~ > 0, Va, (/'2) holds for arbitrary m E M, by convexity and strict mono- 
tonicity of f~'s. 
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To demonstrate the strict convexity of fa it is enough to show that 
f~'(x) which is non-negative for x > 0, vanishes at isolated points only. But 
fa extends to an analytic function in a complex neighborhood of the real 
axis. Therefore, the same holds for f~'. If the real zeros of fa' were not 
isolated it would vanish identically and fa itself would be a linear function, 
which it is not. 

We consider first the solutions of 

m = F(m), m ~ M (A1) 

The property (/'2) is not used in the lemma below. 

Lemma (and definition): 
1. If m <~ F(m) then the sequence Fk(m) is convergent. Its limit m* is 

a solution of (A1). Furthermore m < m*. 
2. If m is a nonzero solution of (A1) then rn~ :~ 0 Va E D_. 
3. For any family (mi) of solutions of (A1) there is a solution 

majorizing all of mi's. 
4. There exists a maximal solution re(K) of (A1); here K = (flJ(a,b), 

flh(a))a,bcQ. If K > K '  then m ( K ) >  m(K'). If K(')$K then m(K (')) 
Sm(K). 

5. The maximal solution is 7/" invariant. 

Proof. By (F1), Fk+l(m) > Fk(m). Since Fk(m)~ = ~< 1, No. 1 fol- 
lows. No. 2 holds by the J connectedness of a_. With m = supmi, m* > m 
> m i, all i, which proves No. 3. 

Let re(K) be the supremum of all solutions of (A1). By No. 3, m(K) is 
the maximal solution. If K /> K '  then m(K' )= FK,(m(K')) <~ FK(m(K')) 
and therefore re(K) ) m(K') by No. 1. 

Let m = l imm(K( ' ) ) .  Then since m(K (')) >1 re(K), m ) re(K). But by 
continuity of K, mw-~FK(m), m = FK(m ). Thus m = re(K), and No. 4 is 
proved. No. 5 follows from the fact that a translate of a solution is again a 
solution and from uniqueness of the maximal solution. 

Proposition. m ( K ) ~ O  for h4:O. If h=O,  m(K) v ~0 for fl >tier 
and m(K) = 0 for fl ~< tier" tier is given by the condition that the maximal 
eigenvalue of the derivative of F pM 1 at zero is 1. 

Assume now h -- 0 and consider the restriction of F to M 1, denoted 
again by F. Let F '  be its derivative at O: 

(F 'm) ,= f~(O) ~ flJ(a,b)m b 
b 

Thus in the natural basis all matrix elements of F '  are nonnegative. 
Moreover, since L is J-connected there is a power of F which has all matrix 
elements strictly positive. By the Perron-Frobenius  theorem the eigenvalue 
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•max of F which is maximal  in modulus  is positive nondegenera te  and the 
corresponding eigenvector  rh can be chosen to be (strictly) positive. It  is 
obvious f rom the form of F that  rh does not  depend  o n / ?  and  that  ~kma x is 
propor t ional  to fl: 

~kmax(/~ ) = X ' / ~  

Assume Xma x > 1. Then  F ' rh  = Xmaxrfi >/ rfi in the sense that  (F'm)a 
>1 m a, any a E ~_. Since t - l F ( t r h ) ~ F ' r h  as t - ~ 0  it follows that  for small  
enough t, t -  1F(t2rh) >1 rh. Thus  for Xma x > 1, (trh)* is a nonzero  solution of 
(A1). 

Next  we note that  for a n y m ~ M / , m : ~ 0 ,  1 /> t ~ > t  2 > 0  

F(m) < t~ 'F( t ,m)  < t f 'F(t2rn ) 

the strict inequality following f rom (/;2). It  follows that  

F(m) < F 'm (A2) 

N o w  if m ~ M 1 is a nonzero fixed point  of F and  fi is the positive 
eigenvector of the matr ix  t ransposed to F '  corresponding to the eigenvalue 
)kma x then, taking (A2) into account ,  

(~,m) = (~,F(m))  < QT, F ' m )  = ~kmax(~,m ) 

which is impossible if Xma X ~< 1. Thus  it has been shown that  m(K)  is 
nonzero if X. /3 > 1 and  zero if ~.  fl < 1. This yields/?r = ~-1-  

In  fact in our  situation (A1) has unique solution if h =/= 0 and  at  most  
two 7/"-invariant solutions if h = 0: the zero solution, and unique nonzero 
solution, if it exists. 

The  proof  below and the fo rm of the condit ion (F2) are adap ted  f rom 
Ref. 3. Let  m be a fixed point  of F. In  both  cases to be considered, there is 
a constant  a > 0 depending on m, such that  m,  >/ a,  Va E R_; this follows 
f rom J-convect iv i ty  of ~_. Let  n be another  fixed point  with corresponding 
cons tant  fi > 0. Suppose it is not  true that  m/>  n, and let t o = sup{t  > /0 :  m 
>1 tn }. Since n a < 1 and  m ~r n, 0 < a < t o < 1. But then, using monotonic -  
ity of F and  (F2), 

m = F(m) >1 F(ton ) >1 (1 + Ti)toF(n ) = (1 + Tl)ton 

Thus  m ~> (1 + ~)ton is contradict ion with the maximal i ty  of t o. 

APPENDIX B. CONVEXITY FOR MANY COMPONENTS 

With suitable normalization of the rotation-invariant measure df~ on 
the unit sphere of R D the measure G of (15) satisfies 

f fJl(1--S2)(1/2)(D-3)f(s)ds 
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and thus the 0 of (4) is 

(p(x) = fl le xs(1 - $2) (1 /2) (D-3)ds:  

We have to show that f = 0 ' / 0  is convex on the positive half-axis. 
f is obviously an analytic function. Also 

f (x )  = J D / 2 ( X ) / / J ( D / 2 ) _  ,(X) (B1) 

where J is the modified Bessel function. (4'6) Either by direct integration by 
parts or from the well-known identities 

, n , n j  
J ,~=J ,+ ]  + "In, J/,= J , - ] -  x " 

one can see that f satisfies the differential equation 

f ' =  1 D -  1 f _  f2 with " f (0 )=  0 (B2) 
x 

From (B1) or (B2) one obtains easily an expansion of f for small x. 

f (x)  = -~ 1 D(D + 2) + O(x') (B3) 

We first show t h a t 0 < f ( x ) <  1, O < f ' <  - 1  a s 0 < x <  + r e .  Let 

D - l  f _ f 2 ,  x,f>~O F(x, f )  = 1 x 
Then as is easy to see the situation is as in Fig. 3. The curve F(x, f )  -- 0 is 
concave and asymptotic to f = 1 as x ~ m. The slope of f at 0 is 1 / D [from 
(B3)], whereas the slope of F(x, f )  -- 0 at 0 is 1/(D - 1). Thus for small x, 
the graph of f is between the x axis and the curve F(x, f )  = 0. But then it 
remains in this region for all x > 0, i.e., f ' (x)  > 0 Vx > 0. For otherwise the 
graph of f would have to cross the curve F(x, f )  -- 0. This is impossible as 
the slope of the last curve is positive everywhere, whereas f at the crossing 
point would have slope 0. 

o 

F ( ~ , ~  > 0 

) 

Fig. 3. Behavior of the solution of the equation (B.2). 
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! 

.3_ 
D 

Fig. 4. Behavior of g = f ' .  

We use a similar argument to show that f "  is negative for x > 0. 
Differentiating (B2) and eliminating f we see that 

f"(x)-  D -  1 D -  1 + ) - 4 ( f ' -  1) 
2 x  2 x 

-f'[(D~x 1)2-4(f ' -1)] ' /2 

Or, w i t h g = f ' , d = D - 1  
c(x, g) 

where 

G(x,g)= d2x 2 _ dx + - ~ - 4 ( g - 1 )  - g  ~ - 4 ( g - 1 )  

Somewhat more involved analysis than before yields now the graph of 
Fig. 4. The curve G(x, g) = 0 has negative slope. For small positive x the 
graph of g is above this curve, i.e., in the region G < 0. But then it stays 
above for all x > 0 by the argument used in analyzing the graph of f. 
Hence f"= g'= G(x, g ) <  0 for all x. Which demonstrates the (strict) 
concavity off .  
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